SciPy-bundle 2023.07-gfbf-2023a
Bundle of Python packages for scientific softwareAccessing SciPy-bundle 2023.07-gfbf-2023a
To load the module for SciPy-bundle 2023.07-gfbf-2023a please use this command on the BEAR systems (BlueBEAR and BEAR Cloud VMs):
📋
module load bear-apps/2023a
module load SciPy-bundle/2023.07-gfbf-2023a
BEAR Apps Version
Architectures
EL8-cascadelake — EL8-icelake — EL8-sapphirerapids
The listed architectures consist of two part: OS-CPU. The OS used is represented by EL and there are several different processor (CPU) types available on BlueBEAR. More information about the processor types on BlueBEAR is available on the BlueBEAR Job Submission page.
Extensions
- beniget 0.4.1
- Bottleneck 1.3.7
- deap 1.4.0
- gast 0.5.4
- mpmath 1.3.0
- numexpr 2.8.4
- numpy 1.25.1
- pandas 2.0.3
- ply 3.11
- pythran 0.13.1
- scipy 1.11.1
- tzdata 2023.3
- versioneer 0.29
More Information
For more information visit the SciPy-bundle website.
Dependencies
This version of SciPy-bundle has a direct dependency on: gfbf/2023a pybind11/2.11.1-GCCcore-12.3.0 Python/3.11.3-GCCcore-12.3.0 Python-bundle-PyPI/2023.06-GCCcore-12.3.0
Required By
This version of SciPy-bundle is a direct dependent of: Arrow/14.0.1-gfbf-2023a ArviZ/0.16.1-foss-2023a ASE/3.22.1-gfbf-2023a ASE/3.23.0-gfbf-2023a Biopython/1.83-foss-2023a bokeh/3.2.2-foss-2023a Cartopy/0.22.0-foss-2023a CASTEP/24.1-foss-2023a dask/2023.9.2-foss-2023a DFTB+/23.1-foss-2023a earthpy/0.9.4-foss-2023a FIGARO/1.1.2.post1-gfbf-2023a GDAL/3.7.1-foss-2023a geopandas/0.14.2-foss-2023a GPAW/23.9.1-foss-2023a GRAPE/0.2.4-foss-2023a h5py/3.9.0-foss-2023a HDBSCAN/0.8.39-gfbf-2023a HF-Datasets/2.18.0-gfbf-2023a jax/0.4.25-gfbf-2023a kinbot/2.2.3-foss-2023a LangChain/0.2.1-foss-2023a langchain-openai/0.1.8-foss-2023a libmbd/0.12.6-foss-2023a matplotlib/3.7.2-gfbf-2023a ml_dtypes/0.3.2-gfbf-2023a MNE-Python/1.7.1-foss-2023a modbam2bed/0.5.3-gfbf-2023a modbamtools/0.4.8-gfbf-2023a molcloud/0.3.0-foss-2023a netcdf4-python/1.6.4-foss-2023a networkx/3.1-gfbf-2023a NiBabel/5.2.0-gfbf-2023a Nilearn/0.10.3-gfbf-2023a numba/0.58.1-foss-2023a ONNX/1.15.0-gfbf-2023a openai-python/1.30.5-foss-2023a OpenCV/4.8.1-foss-2023a-CUDA-12.1.1-contrib OpenCV/4.8.1-foss-2023a-contrib OpenMC/0.15.0-foss-2023a OpenMEEG/2.5.7-foss-2023a ParaView/5.11.2-foss-2023a PhyKIT/1.19.9-foss-2023a PLUMED/2.9.0-foss-2023a pyBigWig/0.3.22-gfbf-2023a PyTensor/2.17.1-gfbf-2023a python-cdo/1.6.0-foss-2023a PyTorch/2.1.2-foss-2023a-CUDA-12.1.1 PyTorch/2.1.2-foss-2023a pyvis/0.3.1-foss-2023a rasterio/1.3.9-foss-2023a rasterstats/0.19.0-foss-2023a RDKit/2024.03.3-foss-2023a scikit_allel/1.3.11-foss-2023a scikit-learn/1.4.2-gfbf-2023a scikit-learn/1.3.1-gfbf-2023a Shapely/2.0.1-gfbf-2023a sourmash/4.8.12-gfbf-2023a spglib-python/2.1.0-gfbf-2023a statsmodels/0.14.1-gfbf-2023a sympy/1.12-gfbf-2023a tensorboard/2.15.1-gfbf-2023a tensorboardX/2.6.2.2-foss-2023a thirdorder/1.1.3-foss-2023a TorchGeo/0.6.0-foss-2023a TorchGeo/0.6.0-foss-2023a-CUDA-12.1.1 Ultralytics/8.2.90-foss-2023a-CUDA-12.1.1 Ultralytics/8.2.90-foss-2023a VTK/9.3.0-foss-2023a xarray/2023.9.0-gfbf-2023a zarr/2.17.1-foss-2023a
Other Versions
These versions of SciPy-bundle are available on the BEAR systems (BlueBEAR and BEAR Cloud VMs). These will be retained in accordance with our Applications Support and Retention Policy.
Last modified on 27th June 2024